On the origin of preferred bicarbonate production from carbon dioxide (CO₂) capture in aqueous 2-amino-2-methyl-1-propanol (AMP).
نویسندگان
چکیده
AMP and its blends are an attractive solvent for CO2 capture, but the underlying reaction mechanisms still remain uncertain. We attempt to elucidate the factors enhancing bicarbonate production in aqueous AMP as compared to MEA which, like most other primary amines, preferentially forms carbamate. According to our predicted reaction energies, AMP and MEA exhibit similar thermodynamic favorability for bicarbonate versus carbamate formation; moreover, the conversion of carbamate to bicarbonate also does not appear more favorable kinetically in aqueous AMP compared to MEA. Ab initio molecular dynamics simulations, however, demonstrate that bicarbonate formation tends to be kinetically more probable in aqueous AMP while carbamate is more likely to form in aqueous MEA. Analysis of the solvation structure and dynamics shows that the enhanced interaction between N and H2O may hinder CO2 accessibility while facilitating the AMP + H2O → AMPH(+) + OH(-) reaction, relative to the MEA case. This study highlights the importance of not only thermodynamic but also kinetic factors in describing CO2 capture by aqueous amines.
منابع مشابه
Modeling of CO2 Removal from Gas Mixtureby 2-amino-2-methyl-1-propanol (AMP) Using the Modified Kent Eisenberg Model
In this paper, the solubility of CO2 in AMP solution have been measured at temperature range of ( 293, 303 ,313,323) K.The amine concentration ranges studied are (2.0, 2.8, and 3.4) M. A solubility apparatus was used to measure the solubility of CO2 in AMP solution on samples of flue gases from Thermal and Central Power Plants of Esfahan Steel Company. The modified Kent Eisenberg model was used...
متن کاملReaction Mechanism and Kinetics of Aqueous Solutions of 2-Amino -2 Methyl-1,3- Propanediol and Carbonyl Sulphide
Aqueous solutions of amines are often used to remove CO2, H2S and COS from a large number of industrial gas streams. There are several different processes, each suiting a certain application. A recent advance in gas treating technology is the application of sterically hindered amines, which offer capacity advantages for CO2 over commercial amines such as monoethanolamine (MEA) (Sartori and Sava...
متن کاملDetermination of carbon dioxide and acid components in exhaust gas by suppressed ion chromatography.
Although anions are usually determined by suppressed ion chromatography (IC), carbonate and bicarbonate ions can not be determined, because a mixed solution of sodium carbonate and sodium hydrogencarbonate is used as the eluent. This paper describes an IC method for the determination of carbonate ion and common anions using an IonPac AG17/AS17 column, an EG 40 eluent generator and a conductivit...
متن کاملThermodynamics of CO2 reaction with methylamine in aqueous solution: A computational study
Separation and capture of carbon dioxide from the flue gas of power plants in order to reduceenvironmental damages has always been of interest to researchers. In this study, aqueous solution ofmethylamine was used as an absorbent for CO2 capture. In order to study this reaction, DensityFunctional Theory (DFT) was employed at the level of B3LYP/6-311++G(d,p) by using theconductor-like polarizabl...
متن کاملApplication of GMA Equation of State to Study Thermodynamic Properties of 2-Amino-2-methyl-1-propanol as an Efficient Absorbent for CO2
Alkanolamine solutions such as 2-amino-2-methyl-1-propanol (AMP) are widely used in chemical industries for the removal of acid gases such as CO2 and H2S. In this work, the density of CO2, AMP, water, and AMP solutions using the Goharshadi–Morsali–Abbaspour Equation of State “GMA EoS” in the extended 50-degree range of temperatures (313.06-362.65 K) and pressures (0.5-40 MPa) was calculated. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 43 شماره
صفحات -
تاریخ انتشار 2015